
Opposition versus randomness in soft computing techniques

Shahryar Rahnamayan, Hamid R. Tizhoosh *, Magdy M.A. Salama

Faculty of Engineering, University of Waterloo, Waterloo, Canada

Received 18 October 2006; received in revised form 30 March 2007; accepted 28 July 2007

Available online 6 August 2007

Abstract

For many soft computing methods, we need to generate random numbers to use either as initial estimates or during the learning and search

process. Recently, results for evolutionary algorithms, reinforcement learning and neural networks have been reported which indicate that the

simultaneous consideration of randomness and opposition is more advantageous than pure randomness. This new scheme, called opposition-based

learning, has the apparent effect of accelerating soft computing algorithms. This paper mathematically and also experimentally proves this

advantage and, as an application, applies that to accelerate differential evolution (DE). By taking advantage of random numbers and their opposites,

the optimization, search or learning process in many soft computing techniques can be accelerated when there is no a priori knowledge about the

solution. The mathematical proofs and the results of conducted experiments confirm each other.

2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/asoc

Applied Soft Computing 8 (2008) 906–918
Keywords: Soft computing; Opposition-based learning; Random numbers; Opposite numbers; Differential evolution
1. Introduction

The footprints of the opposition concept can be observed in

many areas around us. This concept has sometimes been

labeled by different names. Opposite particles in physics,

antonyms in languages, complement of an event in probability,

antithetic variables in simulation, opposite proverbs in culture,

absolute or relative complement in set theory, subject and

object in philosophy of science, good and evil in animism,

opposition parties in politics, theses and antitheses in dialectic,

opposition day in parliaments, and dualism in religions and

philosophies are just some examples to mention. Table 1

contains more instances and corresponding details.

It seems that without using the opposition concept, the

explanation of different entities around us is hard and maybe

even impossible. In order to explain an entity or a situation we

sometimes explain its opposite instead. In fact, opposition often

manifests itself in a balance between completely different

entities. For instance, the east, west, south, and north can not be

defined alone. The same is valid for cold and hot and many
* Corresponding author.

E-mail addresses: shahryar@pami.uwaterloo.ca (S. Rahnamayan),

tizhoosh@uwaterloo.ca (H.R. Tizhoosh), m.salama@ece.uwaterloo.ca

(M.M.A. Salama).

1568-4946/$ – see front matter # 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.asoc.2007.07.010
other examples. Extreme opposites constitute our upper and

lower boundaries. Imagination of the infinity is vague, but when

we consider the limited, it then becomes more imaginable

because its opposite is definable.

Many machine intelligence or soft computing algorithms are

inspired by different natural systems. Genetic algorithms,

neural nets, reinforcement agents, and ant colonies are, to

mention some examples, well established methodologies

motivated by evolution, human nervous system, psychology

and animal intelligence, respectively. The learning in natural

contexts such as these is generally sluggish. Genetic changes,

for instance, take generations to introduce a new direction

in the biological development. Behavior adjustment based on

evaluative feedback, such as reward and punishment, needs

prolonged learning time as well.

In many cases the learning begins at a random point. We, so

to speak, begin from scratch and move toward an existing

solution. The weights of a neural network are initialized

randomly, the population initialization in evolutionary algo-

rithms (e.g., GA, DE, and PSO) is performed randomly, and the

action policy of reinforcement agents is initially based on

randomness, to mention some examples.

Generally, we deal with complex control problems [1,2].

The random guess, if not far away from the optimal solution,

can result in a fast convergence. However, it is natural to state

that if we begin with a random guess, which is very far away

mailto:shahryar@pami.uwaterloo.ca
mailto:tizhoosh@uwaterloo.ca
mailto:m.salama@ece.uwaterloo.ca
http://dx.doi.org/10.1016/j.asoc.2007.07.010

Table 1

Footprints of opposition in different fields

Example Field Description

Opposite particles/elements Physics Such as magnetic poles (N and S), opposite polarities (þ and �), electron-proton in an atom,

action-reaction forces in Newton’s third law, and so on.

Antonyms Language A word that means the opposite of another word (e.g., hot/cold, fast/slow, top/down, left/right,

day/night, on/off).

Antithetic variables Simulation Antithetic (negatively correlated) pair of random variables used for variance reduction.

Opposite proverbs Culture Two proverbs with the opposite advice or meaning (e.g., the pen is mightier than the sword. Actions

speak louder than words.); proverb or its opposite pair offers an applicable solution based on specific

situation or condition.

Complements Set theory (a) Relative complement (B� A ¼ fx2Bjx =2Ag), (b) absolute complement (Ac ¼ U � A, where U

is the universal set).

Opposition Politics A political party or organized group opposed to the government.

Inverter Digital design Output of the inverter gate is one if input is zero and vice versa.

Opposition day Legislation A day in the parliament in which small opposition parties are allowed to propose the subject for

debate (e.g., Canada’s parliament has 25 opposition days).

Dualism Philosophy

and religion

Two fundamental principles/concepts, often in opposition to each other; such as ‘‘Yin’’ and ‘‘Yang’’

in Chinese philosophy and Taoist religion, ‘‘subject’’ and ‘‘object’’ in philosophy of science,

‘‘good’’ and ‘‘evil’’ in animism, ‘‘ahura’’ and ‘‘ahriman’’ in Zarathustra.

Dialectic Philosophy An exchange of ‘‘theses’’ and ‘‘antitheses’’ resulting in a ‘‘synthesis’’ (e.g., in Hinduism, these

three elements are creation (Brahma), maintenance of order (Vishnu) and destruction or disorder (Shiva)).

Classical elements Archetype A set of archetypal classical elements to explain patterns in nature (e.g., the Greek classical

elements are Fire (hot and dry), Earth (cold and dry), Air (hot and wet), and Water (cold and wet)).

If-then-else Algorithm if condition then statements [else elsestatements], the else statements are executed when

the opposite of the condition happens.

Complement of an event Probability PðA0Þ ¼ 1� PðAÞ.
Revolution Socio-political A significant socio-political change in a short period of time.

S. Rahnamayan et al. / Applied Soft Computing 8 (2008) 906–918 907
from the existing solution, let say in worst case it is in the

opposite location, then the approximation, search or optimiza-

tion will take considerably more time, or in worst case becomes

intractable. Of course, in absence of any a priori knowledge, it

is not possible to make the best initial guess. Logically, we

should be looking in all directions simultaneously, or more

efficiently, in the opposite direction.

The scheme of opposition-based learning (OBL) was

introduced by H.R. Tizhoosh [3]. In a very short time, it was

applied to enhance reinforcement learning [4–6,8,18,34],

differential evolution [10–14], backpropagation neural networks

[15,17], simulated annealing [9], ant colony optimization [16],

and window memorization for morphological algorithms [7].

Although, the achieved empirical results in the mentioned papers

confirm that the concept of opposition-based learning is general

enough and can be utilized in a wide range of learning and

optimization fields to make these algorithms faster. We are still

faced with this fundamental question: Why an opposite number

is beneficial compared to an independent random number? In

other words, why a second random number should not be used

instead of an opposite number? Many optimization methods need

to generate random numbers for initialization or using them

during the search process, such as differential evolution (DE)

[36], genetic algorithms (GAs) [20], ant colony optimization

(ACO) [21], particle swarm optimization (PSO) [22], simulated

annealing (SA) [23], and random search (RS) [24].

In this paper, we will prove that, in terms of convergence

speed, utilizing random numbers and their opposites is more

beneficial than using the pure randomness to generate initial

estimates in absence of a priori knowledge about the solution.

In fact, we mathematically and empirically show why opposite
numbers have higher chance to be a fitter estimate compared to

additional independent random guesses.

Finally, a population-based algorithm, differential evolution

(DE), is selected to be accelerated using the opposition concept.

The main reason for selecting DE is its high ability to find

precise solutions for the mixed-typed black-box global

optimization problems [25]. The population-based algorithms

are computationally expensive and hence their acceleration is

widely appreciated. Among the various evolutionary algo-

rithms [26–28], differential evolution (DE) is well known for its

effectiveness and robustness. Frequently reported studies

demonstrate that the DE outperforms many other optimizers

over both benchmark functions and real-world applications.

The rest of this paper is organized as follows: Section 2

covers the definitions, theorems, and proofs corresponding

to opposition-based learning. Empirical verification of the

mathematical results are given in Section 3. Employing of OBL

to accelerate differential evolution is investigated in Section 4.

Finally, the paper is concluded in Section 5.

2. Opposition-based learning (OBL): Definitions,

theorems, and proofs
Definition 1. Let x be a real number in an interval

½a; b�ðx2 ½a; b�Þ; the opposite of x, denoted by x�, is defined by

x�¼ aþ b� x: (1)

Fig. 1 (top) illustrates x and its opposite x�in interval ½a; b�.
As seen, x and x�are located in equal distance from the interval’s

center (jðaþ bÞ=2� xj ¼ jx�� ðaþ bÞ=2j) and the interval’s

boundaries (jx� aj ¼ jb� x�j) as well.

Fig. 1. Illustration of a point and its corresponding opposite in one-, two-, and

three-dimensional spaces.

S. Rahnamayan et al. / Applied Soft Computing 8 (2008) 906–918908
This definition can be extended to higher dimensions by

applying the same formula to each dimension [3].
Definition 2. Let Pðx1; x2; . . . ; xDÞ be a point in D-dimensional

space, where x1; x2; . . . ; xD are real numbers and xi 2 ½ai; bi�,
i ¼ 1; 2; . . . ;D. The opposite point of P is denoted by

P�ðx�1; x�2; . . . ; x�DÞ where

x�i ¼ ai þ bi � xi: (2)

Fig. 1 illustrates a sample point and its corresponding

opposite point in one-, two-, and three-dimensional spaces.
Theorem 1. Uniqueness Every point Pðx1; x2; . . . ; xDÞ in

the D-dimensional space of real numbers with xi 2 ½ai; bi�
has a unique opposite point P�ðx�1; x�2; . . . ; x�DÞ defined by

x�i ¼ ai þ bi � xi, i ¼ 1; 2; 3; . . . ;D.
Proof. Let us consider, without lose of generality, the two

space corners a1 and b1 for the one-dimensional case. Accord-

ing to the opposite point definition, we have jx� a1j ¼ jx�� b1j
or jx�� a1j ¼ jx� b1j. Now, assume that a second point x0 is

also opposite of x. Then, we should have jx� a1j ¼ jx0 � b1j or

jx0 � a1j ¼ jx� b1j. This, however, means x0 ¼ x�. Hence, x�is

unique. By this way, the uniqueness is supported for each

dimension of P�ðx�1; x�2; . . . ; x�DÞ regarding Pðx1; x2; . . . ; xDÞ,
so, P� is unique as well.
Now, after the definition of the opposite points we are ready

to define Opposition-based learning (OBL). &
Definition 3. Let Pðx1; x2; . . . ; xDÞ, a point in a D-dimensional

space with xi 2 ½ai; bi� (i ¼ 1; 2; 3; . . . ;D), be a candidate solu-

tion. Assume f ðxÞ is a fitness function which is used to measure

candidate optimality. According to opposite point definition,

P�ðx�1; x�2; . . . ; x�DÞ is the opposite of Pðx1; x2; . . . ; xDÞ. Now, if

f ðP�Þ� f ðPÞ, then point P can be replaced with P�; otherwise

we continue with P. Hence, the point and its opposite point are

evaluated simultaneously to continue with the fitter one [3].

This definition of OBL is making two fundamental

assumptions. First, one of the candidate or the opposite

candidate is always closer to the solution or are in the same

distance from that, and second, considering the opposition is

more beneficial than generating additional random solutions

and taking the best among them.

Empirical evidence for these claims will be provided in

Section 3. However, prior to providing experimental results, we

also want to provide mathematical proofs.
Definition 4. Euclidean distance between two points

Pð p1; p2; . . . ; pDÞ and Qðq1; q2; . . . ; qDÞ in a D-dimensional

space is defined by

dðP;QÞ ¼ kP;Qk ¼

ffiXD

i¼1

ð pi � qiÞ2
vuut : (3)

It can be simplified as follows for a one-dimensional space:

dðP;QÞ ¼ kP;Qk ¼ j p� qj: (4)

Theorem 2. First opposition theorem For any (unknown)

function y ¼ f ðxÞðx2 ½a; b�Þ with global optimum at

xsðxs 6¼ ðaþ bÞ=2Þ, the estimate solution x and its opposite x�,
we have

Prðjx�� xsj< jx� xsjÞ ¼
1

2
; (5)

where Prð�Þ is the probability function. It means candidate

solution and its opposite have the equal chance to be closer to

the solution.
Proof. x> ðaþ bÞ=2, x�2 ½a; ðaþ bÞ=2� and x< ðaþ bÞ=
2, x�2 ½ðaþ bÞ=2; b�. If xs 6¼ ðaþ bÞ=2, then Prðjx��
xsj< jx� xsjÞ ¼ 1=2. For xs ¼ ðaþ bÞ=2, then Prðjx�� xsj
¼ jx� xsjÞ ¼ 1. &

Now, lets focus on the second assumption of OBL. Suppose

the random variables x1; x2; . . . are continuous independent

random variables representing the system inputs. Suppose the

performance of the system for given inputs xi is a monotone

function gðxiÞ. We wish to compare the performance of a

system with independent inputs with one using opposition-

based inputs. In particular, we wish to maximize some measure

of performance gðxÞ over possible inputs x. The following

theorem shows the benefit of the opposite inputs, compared to

random inputs.

Fig. 2. Illustration of increasingly monotone g, interval boundaries, candidate

and opposite candidate solutions.

S. Rahnamayan et al. / Applied Soft Computing 8 (2008) 906–918 909
Theorem 3. Second opposition theorem For increasingly

monotone g, PrðgðxrÞ<max fgðxÞ; gðx�ÞgÞ ¼ 3=4, where x is

the first random guess; x�is the opposite point of x; and xr is the

second random guess.
Proof. Let us prove PrðgðxrÞ�max fgðxÞ; gðx�ÞgÞ ¼
1� PrðgðxrÞ<max fgðxÞ; gðx�ÞgÞ ¼ 1=4 instead (see Fig. 2),

PrðgðxrÞ>max fgðxÞ; gðx�ÞgÞ

¼ Pr

�
x<

aþ b

2

�
� Pr

�
x�>

aþ b

2

�
� Pr

�
xr >

aþ b

2

�

� Prðxr > x�Þ þ Pr

�
x>

aþ b

2

�
� Pr

�
x�<

aþ b

2

�

� Pr

�
xr >

aþ b

2

�
� Prðxr > xÞ

¼ 1

2
� 1� 1

2
� 1

2
þ 1

2
� 1� 1

2
� 1

2
¼ 1

8
þ 1

8
¼ 1

4
:

Following results are obtained from this theorem:

1. PrðgðxÞ> gðxrÞÞ ¼ PrðgðxrÞ < max fgðxÞ; gðx�ÞgÞ � 1 ¼ 3

2 4

� 1
2
¼ 3

8
¼ 0:375,
2. P
rðgðx�Þ> gðxrÞÞ ¼ PrðgðxrÞ < max fgðxÞ; gðx�ÞgÞ � 1
2
¼

3
4
� 1

2
¼ 3

8
¼ 0:375,
3. P
rððgðxrÞ> gðxÞÞ ^ ðgðxrÞ> gðx�ÞÞÞ¼PrðgðxrÞ�max fgðxÞ;
gðx�ÞgÞ ¼ 1

4
¼ 0:25.

Hence, by assuming g is a monotone function, the opposite

point has 12.5% (0:375� 0:25 ¼ 0:125) higher chance to

have a higher g value compared to the second random guess.

For the following Central Opposition Theorems (one and

D-dimensional), no assumption regarding the g function will be

made. &
Theorem 4. Central Opposition Theorem for one-dimensional

space

Assume

(a) y ¼ f ðxÞðx2 ½a; b�Þ is an unknown function with at least
Fig. 3. All possible situations of xr and xs for a black-box optimization

problem.
one solution xs 2 ½a; b� for f ðxÞ ¼ a; the solution can be

anywhere in our search space (i.e., a black-box optimization

problem),
(b) x
 is the first uniform random guess and xr is the second

uniform random guess in ½a; b�; candidate solutions should

be uniform random numbers because all points have the

same chance to be the solution,
(c) O
pposite of x2 ½a; b� is defined as x�¼ aþ b� x,
Then

Prðjx�� xsj< jxr � xsjÞ>Prðjxr � xsj< jx�� xsjÞ.
In other words, the probability that the opposite point is

closer to the solution is higher than probability of a second

random guess.
Proof. In order to prove this theorem, we follow an exhaustive

proof by covering all possible situations. Lets say, N different

points over the interval ½a; b� divide it to N þ 1 sub-intervals.

So, three points (x 6¼ ðaþ bÞ=2 6¼ x�) divide the interval ½a; b� to
four sub-intervals ½a; x�; ½x; ðaþ bÞ=2�; ½ðaþ bÞ=2; x��; and ½x�; b�.
The solution xs and the second random guess xr can form 16

(4� 4) different ways/combinations in the above mentioned

four sub-intervals. Fig. 3 illustrates all possible situations

for a black-box optimization problem. We will call each

S. Rahnamayan et al. / Applied Soft Computing 8 (2008) 906–918910
situation an event. Therefore, we have 16 possible events (ei,

i ¼ 1; 2; . . . ; 16). The probability of all events is equal because

the solution (xs), the first random guess (x), and the second

random guess (xr) can appear anywhere in the interval ½a; b� for

a black-box optimization problem. Hence, &
PrðeiÞ ¼
1

16
; i ¼ 1; 2; . . . ; 16: (6)

In order to establish an exhaustive proof, we start to calculate

the following corresponding probabilities for each event:

px= probability of x being the closest to the solution xs

among fx; x�; xrg,
pr= probability of the second random guess xr being the

closest to the solution xs among fx; x�; xrg,
px�= probability of the opposite point x�being the closest to

the solution xs among fx; x�; xrg.

Obviously we have

px þ px�þ pr ¼ 1: (7)

Now, all events are categorized into following four groups,

see Fig. 4:

1. Group1 ¼ fe2; e3; e4; e5; e12; e13; e14; e15g, ðx; x�2 ½xs; xr�Þ.

At least one of x or x�is located between the xs and xr.
2. G
roup2 ¼ fe8; e9g, ðmin jxs � xrj � jx� xsjÞ _ ðmin jxs� xrj
� jx�� xsjÞ.
Fig. 4. Similar events are in the same group.

Tab

Pro

(le

Ev

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15

e16
Minimum distance between xs and xr is greater than

distance between xs and x=x�.

3. G
roup3 ¼ fe7; e10g, ðxs 2 ½x; ðaþ bÞ=2�Þ ^ ðxr 2 ½ðaþ bÞ=

2; x��Þ or vice versa.
4. G
roup4 ¼ fe1; e6; e11; e16g, xr and xs are in the same interval.

In order to complete our table of probabilities step by step,

the corresponding probabilities (px, pr, and px�) are calculated

for each group as follows:

Group1: fe2; e3; e4; e5; e12; e13; e14; e15g
When x2 ½xs; xr� and it is closer to solution than x�, then x is

clearly the closest to the solution (events: e2, e3, e4, and e5,

Fig. 4). Hence px ¼ 1. Similarly, the same logic can be applied

to x�(events: e12, e13, e14, and e15, Fig. 4). For these cases the

entries can be inserted into the table of probabilities (Table 2).

Newly added values are highlighted in boldface.

Group2: fe8; e9g
(1) I
l

b

ft

e

f min jxs � xrj � jx� xsj, so obviously px ¼ 1, applicable

to e8.
(2) S
imilarly, if min jxs � xrj � jx�� xsj, then obviously px�¼ 1,

applicable to e9.
These cases are completed in Table 2.

Group3: fe7; e10g
Events e7 and e10 are similar cases (Fig. 4). Let us assume

px ¼ a for event e7, so we have pr ¼ 1� a because px þ
px�þ pr ¼ 1 and px�¼ 0. Analogously, for event e10, we have

px�¼ a, pr ¼ 1� a, and px ¼ 0. We can complete our table for

another two events (e7 and e10), see Table 2.

Now, let us have a preliminary estimate for a. Similar to the

reason which was mentioned for Group2, we can conclude

a>
1

2
: (8)

If min jxr � xsj � jx� xsj, so obviously px ¼ 1, this case

happens with a probability of at least 1=2 when xs is in the

interval ½x; k� (the half of the interval ½x; ðaþ bÞ=2�), see Fig. 5.
e 2

abilities table after adding computations of Group1, Group2, and Group3

to right, respectively)

nt pxi
pri

px�i
pxi

pri
px�i

pxi
pri

px�i

– – – – – – – – –

1 0 0 1 0 0 1 0 0

1 0 0 1 0 0 1 0 0

1 0 0 1 0 0 1 0 0

1 0 0 1 0 0 1 0 0

– – – – – – – – –

– – – – – – a (1�a) 0

– – – 1 0 0 1 0 0

– – – 0 0 1 0 0 1

– – – – – – 0 (1�a) a

– – – – – – – – –

0 0 1 0 0 1 0 0 1

0 0 1 0 0 1 0 0 1

0 0 1 0 0 1 0 0 1

0 0 1 0 0 1 0 0 1

– – – – – – – – –

Fig. 5. Illustration of why the inequality a> 1=2holds. k is the center of the

interval ½x; ðaþ bÞ=2�.

Fig. 7. The e7 is selected to calculate an impact boundary for the a.

S. Rahnamayan et al. / Applied Soft Computing 8 (2008) 906–918 911
Group4: fe1; e6; e11; e16g
For this group, xr and xs are in the same interval. We just

need to solve one of them. Lets select event e1; this case can be

decomposed to four possible sub-cases, presented in Fig. 6. For

these sub-cases, the probabilities are given in Table 2. (Note the

recursive definition of the event (1b)). In order to calculate p1x,

let

p1x ¼
1

4
� p1x þ

1

4
� a) p1x ¼

a

3
: (9)

We know pðeiÞ ¼ 1=16 (Eq. (6)), so

px1
¼ 1

16
� a

3
) p1x ¼

a

48
: (10)

And finally

pr1
¼ 1� px1 ¼

1� a

48
¼ 48� a

48
: (11)

Now, we are ready to complete our table (see Table 2).

According to our final probabilities table, we have

px ¼
X16

i¼1

pðeiÞ pxi
¼ 5þ 25a=24

16
: (12)

pr ¼
X16

i¼1

pðeiÞ pri
¼ 6� 50a=24

16
: (13)

px�¼
X16

i¼1

pðeiÞ px�i ¼
5þ 25a=24

16
: (14)
Fig. 6. Four possible sub-cases when xr and xs are in the same interval.
Now, let us investigate when px�> pr:

ð px�> prÞ,
5þ 25a=24

16
>

6� 50a=24

16
(15)

or

ð px�> prÞ,a>
24

75
(16)

This is confirmed with a> 1=2 (Eq. (8)).

How much better is the opposite point?

Now we want to calculate an impact boundary for a and

estimate the value of px, px�, and pr. In the following two steps,

we will find the lower and the upper boundaries for a.

Step 1. Calculating a lower boundary for a—Without lose of

generality, we select e7 to find the impact interval for a (Fig. 7).

As mentioned before, if min jxs � xrj � jx� xsj, so

obviously px ¼ 1. As illustrated in Fig. 8, we have

pxjmin jxs�xr j � jx�xs j
¼ lim

N!1

XN

i¼1

Psi � Pri : (17)

Psi and Pri denote the probability of the presence of the

solution and the second random guess in the shown intervals.

pxjmin jxs�xr j � jx�xs j

¼ lim
N!1

�
1

21
� 1

20
þ 1

22
� 1

21
þ 1

23
� 1

22
þ . . .þ 1

2ðNþ1Þ �
1

2N

�
(18)

pxjmin jxs�xr j � jx�xs j
¼ lim

N!1

�
1

21
þ 1

23
þ 1

25
þ . . .þ 1

2ð2Nþ1Þ

�
(19)
Fig. 8. Situations which min jxs � xr j � jx� xsj.

Administrator
Highlight

Fig. 9. Situations which min jx� xsj � jxr � xsj.

S. Rahnamayan et al. / Applied Soft Computing 8 (2008) 906–918912
This equation presents infinite geometric series; such series

converge if and only if the absolute value of the common ratio is

less than one (jrj< 1). For these kinds of series we have

lim
N!1

XN

k¼1

ark ¼ lim
N!1

að1� rNþ1Þ
1� r

¼ a

1� r
: (20)

Hence
pxjmin jxs�xr j � jx�xs j
¼ 4

6
: (21)

So, we receive

4

6
� a: (22)

Step 2. Calculating an upper boundary for a—Analogously,

If min jx� xsj � jxs � xrj, then pr ¼ 1. So, as illustrated in

Fig. 9, we have
prjmin jx�xs j � jxs�xr j
¼ lim

N!1

XN

i¼1

Psi � Pri (23)

prjmin jx�xs j � jxs�xr j

¼ lim
N!1

�
1

22
� 1

21
þ 1

23
� 1

22
þ 1

24
� 1

23
þ . . .þ 1

2ðNÞ
� 1

2ðN�1Þ

�
(24)

prjmin jx�xs j � jxs�xr j
¼ lim

N!1

�
1

23
þ 1

25
þ 1

27
þ . . .þ 1

2ð2N�1Þ

�
(25)

Again, we are faced with infinite geometric series and by

reusing the Eq. (20), we have
prjmin jx�xs j � jxs�xr j
¼ 1

6
: (26)

Finally, we have
a � ð1� prjmin jx�xs j � jxs�xr j
Þ ¼ 5

6
; (27)

pxjmin jxs�xr j � jx�xs j
� a � ð1� prjmin jx�xs j � jxs�xr j

Þ; (28)

or
4

6
� a � 5

6
: (29)
By establishing this boundaries for a and considering

Eqs. (12)–(14), we have

205

576
� px ¼ px��

845

2304
: (30)

or

0:36 � px ¼ px�� 0:37: (31)

And also

307

1152
� pr �

83

288
: (32)

or

0:27 � pr � 0:29: (33)

Hence, the opposite of x (x�) has a higher chance to be closer

to the solution, xs, compared to the second random guess, xr, in

a one-dimensional solution space.

The center of the interval ½4
6
; 5

6
� for a is 9=12 or 0:75. By

substituting this mean value in Eqs. (12)–(14), we receive

px ¼ px�¼ 0:3613 and pr ¼ 0:2773: (34)

Central Opposition Theorem can be extended to higher

dimensions, following theorem addresses this extension.

Theorem 5. Central Opposition Theorem for D-dimensional

space Assume
(a) y
 ¼ f ðXÞis an unknown function with Xðx1; x2; x3; . . . ; xDÞ,
xi 2 ½ai; bi�, i ¼ 1; 2; 3; . . . ;D and at least one solution at

Xsðxs1
; xs2

; xs3
; . . . ; xsDÞ, xsi 2 ½ai; bi�, i ¼ 1; 2; 3; . . . ;D,
(b) X
 is the first uniform random guess and Xrðxr1
; xr2

; xr3
; . . . ;

xrDÞ is the second uniform random guess in the solution

space,
(c) T
he opposite point of Xðx1; x2; . . . ; xDÞ is defined by

X�ðx�1; x�2; . . . ; x�DÞ where

x�i ¼ ai þ bi � xi; i ¼ 1; 2; 3; . . . ;D:
Then PrðkX�;Xsk< kXr;XskÞ>PrðkXr;Xsk< kX�;XskÞ,
where k � k denotes the Euclidean distance.

Proof. We have

PrðkX�;Xsk< kXr;XskÞ>PrðkXr;Xsk< kX�;XskÞ

¼ Pr

� ffiXD

i¼1

ðx�i � xsiÞ
2

vuut <

ffiXD

i¼1

ðxri � xsiÞ
2

vuut �

>Pr

� ffiXD

i¼1

ðxri � xsiÞ
2

vuut <

ffiXD

i¼1

ðx�i � xsiÞ
2

vuut �

According to the Central Opposition Theorem for one-dimen-

sional space we have

Prðjx�� xsj< jxr � xsjÞ>Prðjxr � xsj< jx�� xsjÞ: (35)

S. Rahnamayan et al. / Applied Soft Computing 8 (2008) 906–918 913
That is true for each dimension in the solution space, so

Prðjx�i � xsi j< jxri � xsi jÞ>Prðjxri � xsi j< jx�i � xsi jÞ;

i ¼ 1; 2; 3; . . . ;D
(36)

Hence
Table 3

Probabilities table of shown four cases in Fig. 6

Event p1xi
p1ri

p1x�i

1a 0 1 0

1b p1x p1r 0

1c 0 1 0

1d a ð1� aÞ 0

Algorithm 1. Calculate px, px�, and pr experimentally.
Pr
ffiPD

i¼1ðx�i � xsiÞ
2

q
<

ffiPD
i¼1ðxri � xsiÞ

2
q� �

>PrffiPD
i¼1ðxri � xsiÞ

2
q

<
ffiPD

i¼1ðx�i � xsiÞ
2

q� �
,

and the Central Opposition Theorem is also valid for a

D-dimensional space. &

Simply, if in each dimension x�i has a higher chance to be

closer to the solution than xi, consequently according to

Euclidean distance, the point P�, in a D-dimensional space, will

have a higher chance to be closer to solution than P.

3. Empirical verification of mathematical results

In this section, the aforementioned mathematical proofs are

experimentally verified and the usefulness of the opposite

numbers in higher dimensional spaces is investigated. For this

propose, three random points in a D-dimensional space are

generated (n times), called X, Xs, and Xr. Then, the number of

times (out of n) which X, X�, or Xr is the closest to the randomly

generated solution Xs (measured by Euclidean distance) is

counted and finally the probability of the closeness of each

point is calculated (px, px�, and pr). In conducted experiments,

n is chosen a large number in order to have an accurate

estimation for probability values. The proposed method for this

empirical verification is presented in Algorithm 1. As shown,
there are two nested loops, the outer one to feed dimensions and

the inner one to handle n trials for each dimension.

The experiments have been conducted for different

dimensions ranging from D ¼ 1 to D ¼ 10; 000. In order to

attain reliable results, the number of trials n was set to

1,000,000. Results are summarized in Table 3.
Results analysis: The mean m (across all dimensions),

standard deviation s, and 95% confidential interval (CI) of px,

px�, and pr have been calculated for the results of dimensions

D ¼ 1, 2, 3, . . ., 10,000. Low standard deviations and short

confidence intervals show that the probabilities remain the

same for all investigated dimensions. The probability of

opposite point px� (0.3617) is 0.085 higher than the probability

of a second random guess pr (0.2767). As shown in Table 3,

interestingly, experimental results conform with established

theorems.

Additional experiments (not presented here) showed that

a ¼ 0:75 is a proper value (a similar experimental method

presented in this section is used to simulate e7 and calculate a,

see Fig. 7). Using this empirical value in Eqs. (12)–(14), a more

accurate comparison between theoretical and experimental

probabilities can be provided (see Table 3). As seen, the

probabilities are almost the same.

S. Rahnamayan et al. / Applied Soft Computing 8 (2008) 906–918914
4. Employing OBL to accelerate differential evolution

Differential evolution (DE) was proposed by Price and Storn

in 1995 [29,31]. It is an effective, robust, and simple global

optimization algorithm [36] which has only a few control

parameters. According to frequently reported comprehensive

studies [19,32,33,36], DE outperforms many other optimization

methods in terms of convergence speed and robustness over

common benchmark functions and real-world problems.

Generally speaking, all population-based optimization algo-

rithms, no exception for DE, suffer from long computational

times because of their evolutionary/stochastic nature. This

crucial drawback sometimes limits their application to off-line

problems with little or no realtime constraints.

In this section, OBL has been utilized to accelerate the

convergence rate of differential evolution. Hence, our proposed

approach has been called opposition-based differential evolu-

tion (ODE). ODE uses opposite numbers during population

initialization and also for generating new populations during

the evolutionary process. To the best of our knowledge, this is

the first time that opposite numbers have been utilized to speed

up the convergence rate of an optimization algorithm.

4.1. Opposition-based differential evolution (ODE)

The flowchart of the classical differential evolution (DE) are

presented in Fig. 10 by white blocks. The grey blocks (1) and

(3) indicate the opposition-based population initialization and

generation jumping, respectively, which are embedded inside

the classical DE algorithm to accelerate that using the OBL.

These two blocks are explained in the following sections.
Fig. 10. Opposition-based diff
4.1.1. Opposition-based population initialization

According to authors best knowledge, random number

generation, in absence of a priori knowledge, is the commonly

used choice to create an initial population. But, as mentioned

before, by utilizing OBO we can obtain fitter starting candidates

even when there is no a priori knowledge about the solution(s).

Block (1) from Fig. 10 shows the implementation of opposition-

based population initialization. Following steps explain that

procedure:

Step 1. Initialize the population PðN pÞ randomly,

Step 2. Calculate opposite population by

OPi; j ¼ a j þ b j � Pi; j; i ¼ 1; 2; . . . ;N p; j ¼ 1; 2; . . . ;D:

(37)

where Pi; j and OPi; j denote the j th variable of the i th

population and the opposite-population vector, respectively.

Step 3. Select the N p fittest individuals from the set

fP[OPg as the initial population.

According to the above procedure, 2N p function evaluations

are required instead of N p for the regular random population

initialization. But, by the opposition-based initialization, the

parent algorithm can start with the fitter initial individuals

instead, and this is a one-time cost.

4.1.2. Opposition-based generation jumping

By applying a similar approach to the current population,

the evolutionary process can be forced to jump to a fitter

generation. Based on a jumping rate Jr (i.e., jumping

probability), after generating new populations by mutation,

crossover, and selection, the opposite population is calculated
erential evolution (ODE).

Table 5

Numerical results generated by Algorithm 1 (m: Mean, s: Standard deviation,

CI: Confidence interval)

px px� pr

m 0.3617 0.3617 0.2767

s 0.0048 0.0048 0.0045

95%CI (0.3616, 0.3618) (0.3616, 0.3618) (0.2766, 0.2767)

S. Rahnamayan et al. / Applied Soft Computing 8 (2008) 906–918 915
and the N p fittest individuals are selected from the union of the

current population and the opposite population. As a difference

to opposition-based initialization, it should be noted here that

in order to calculate the opposite population for generation

jumping, the opposite of each variable is calculated dynami-

cally. That is, the maximum and minimum values of each

variable in the current population (½MIN
p
j ;MAX

p
j �) are used to

calculate opposite points instead of using variables’ predefined

interval boundaries (½a j; b j�):

OPi; j ¼ MIN
p
j þMAX

p
j � Pi; j; i ¼ 1; 2; . . . ;N p;

j ¼ 1; 2; . . . ;D: (38)

By staying within variables’ static boundaries, it is possible to

jump outside of the already shrunken search space and lose the

knowledge of the current reduced space (converged population).

Hence, we calculate opposite points by using variables’ current

interval in the population (½MIN
p
j ;MAX

p
j �) which is, as the

search does progress, increasingly smaller than the correspond-

ing initial range ½a j; b j�. Block (3) from Fig. 10 indicates the

implementation of opposition-based generation jumping.

4.2. Benchmark functions

A set of 15 benchmark functions (7 unimodal and 8

multimodal functions) has been used for performance

verification of the proposed approach. Furthermore, test

functions with two different dimensions (D and 2� D) have

been employed in the conducted experiments. By this way, the

classical differential evolution (DE) and opposition-based DE

(ODE) are compared on 30 minimization problems. The

definition of the benchmark functions is given in Table 4.2.

4.3. Comparison strategies and metrics

In this study, three metrics, namely, number of function calls

(NFC), success rate (SR), and success performance (SP) [35]

have been utilized to compare the algorithms. We compare the
Table 4

Probabilities table, final result

Event pxi
pri

px�i

e1 ða=48Þ ð48� aÞ=48 0

e2 1 0 0

e3 1 0 0

e4 1 0 0

e5 1 0 0

e6 ða=48Þ ð48� aÞ=48 0

e7 a ð1� aÞ 0

e8 1 0 0

e9 0 0 1

e10 0 ð1� aÞ a

e11 0 ð48� aÞ=48 ða=48Þ
e12 0 0 1

e13 0 0 1

e14 0 0 1

e15 0 0 1

e16 0 ð48� aÞ=48 ða=48Þ
Sum ð5þ 25a=24Þ ð6� 50a=24Þ ð5þ 25a=24Þ
convergence speed by measuring the number of function calls

which is the most commonly used metric in literature [11–

14,35]. A smaller NFC means higher convergence speed. The

termination criterion is to find a value smaller than the value-to-

reach (VTR) before reaching the maximum number of function

calls MAXNFC. In order to minimize the effect of the stochastic

nature of the algorithms on the metric, the reported number of

function calls for each function is the average over 50 trials.

The number of times, for which the algorithm succeeds to

reach the VTR for each test function is measured as the success

rate SR:

SR ¼ number of times reached VTR

total number of trials
: (39)

The average success rate (SRave) over n test functions are

calculated as follows:

SRave ¼
1

n

Xn

i¼1

SRi: (40)

Both of NFC and SR are important measures in an

optimization process. So, two individual objectives should be

considered simultaneously to compare competitors. In order to

combine these two metrics, a new measure, called success

performance (SP), has been introduced as follows [35]:

SP ¼ mean ðNFC for successful runsÞ
SR

: (41)

SP is our main measure to judge which algorithm performs

better than others.

4.4. Setting control parameters

Parameter settings for all conducted experiments are

presented in Table 4.4. The same setting has been used in

literature cited after of each parameter.
Table 7

Comparison of experimental and mathematical results for a ¼ 0:75

px px� pr

Mathematical computation (a ¼ 0:75) 0:3613 0:3613 0:2773

Experimental results 0:3617 0:3617 0:2767

Table 6

Comparison of experimental and mathematical results

px px� pr

Mathematical

computation

(0.3559, 0.3667) (0.3559, 0.3667) (0.2664, 0.2881)

Experimental results 0.3617 0.3617 0.2767

Table 8

List of employed benchmark functions

Name Definition S

1st De Jong f 1ðXÞ ¼
PD

i¼1xi
2 ½�2:56; 7:68�D

Axis parallel hyper-ellipsoid f 2ðXÞ ¼
PD

i¼1ixi
2 ½�2:56; 7:68�D

Schwefel’s Problem 1.2
f 3ðXÞ ¼

PD
i¼1

Pi
j¼1x j

� �2 ½�32:5; 97:5�D

Rastrigin’s function f 4ðXÞ ¼ 10Dþ
PD

i¼1 x2
i � 10cos ð2pxiÞ

� �
½�2:56; 7:68�D

Griewangk’s function
f 5ðXÞ ¼

PD
i¼1

x2
i

4000
�
QD

i¼1cos xiffi
i
p
� �

þ 1 ½�300; 900�D

Sum of different power f 6ðXÞ ¼
PD

i¼1jxijðiþ1Þ ½�0:5; 1:5�D

Ackley’s problem
f 7ðXÞ ¼ �20exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD

i¼1
x2

i
D

r !
� exp

PD

i¼1
cos ð2pxiÞ
D

� �
þ 20þ e

½�16; 48�D

Levy function f 8ðXÞ ¼ sin 2ð3px1Þ þ
PD�1

i¼1 ðxi � 1Þ2ð1þ sin 2ð3pxiþ1ÞÞ þ ðxD � 1Þð1þ sin 2ð2pxDÞÞ ½�10; 10�D
Michalewicz function f 9ðXÞ ¼ �

PD
i¼1sin ðxiÞðsin ðix2

i =pÞÞ
2m

, ðm ¼ 10Þ ½0;p�D

Zakharov function f 10ðXÞ ¼
PD

i¼1x2
i þ

PD
i¼10:5ixi

� �2 þ
PD

i¼10:5ixi

� �4 ½�5; 10�D

Schwefel’s Problem 2.22 f 11ðXÞ ¼
PD

i¼1jxij þ
QD

i¼1jxij ½�5; 15�D
Step function f 12ðXÞ ¼

PD
i¼1ð b xi þ 0:5 c Þ2 ½�50; 150�D

Alpine function f 13ðXÞ ¼
PD

i¼1jxisin ðxiÞ þ 0:1xij ½�5; 15�D
Exponential problem f 14ðXÞ ¼ exp �0:5

PD
i¼1x2

i

� �
½�0:5; 1:5�D

Salomon problem
f 15ðXÞ ¼ 1� cos ð2pkxkÞ þ 0:1kxk, wherekxk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD
i¼1x2

i

q
½�50; 150�D

The 13 functions (out of 15) have an optimum in the center of searching space, to make it asymmetric, the search space for all of these functions are shifted a=2 (which

means if �a � xi � a and f min ¼ f ð0; . . . ; 0Þ ¼ 0 then �aþ a=2 � xi � aþ a=2).

Table 10

Comparison of DE and ODE

F D DE

NFC SR S

f 1 30 86,072 1 8

60 15,4864 1 1

f 2 30 95,080 1 9

60 17,6344 1 1

f 3 20 174,580 1 1
40 816,092 1 8

f 4 10 323,770 0.96 3

20 811,370 0.08 1

f 5 30 111,440 0.96 1

60 193,960 1 1

f 6 30 18,760 1 1

60 33,128 1 3

f 7 30 168,372 1 1

60 294,500 1 2

f 8 30 101,460 1 1

60 180,260 0.84 2

f 9 10 191,340 0.76 2
20 288,300 0.35 8

Table 9

Parameter settings

Parameter name Setting Reference

Population size (N p) 100 [13,37–39]

Differential amplification factor (F) 0.5 [13,29,30,32,38,40]

Crossover probability constant (Cr) 0.9 [13,29,30,32,38,40]

Jumping rate constant (Jr) 0.3 [11–14]

Maximum number of

function calls (MAXNFC)
106 [11,13,14]

Value to reach (VTR) 10�8 [13,35]

Mutation strategy DE/rand/1/bin [22,29,36,38,41]

S. Rahnamayan et al. / Applied Soft Computing 8 (2008) 906–918916
4.5. Experimental results

Results of applying DE and ODE to solve 30 test problems

are given in Table 4.5. The best function call (NFC) and the

success performance for each case are highlighted in boldface.

As seen, ODE outperforms DE on 25 functions, while, DE just

on 4 functions shows better results than ODE. DE performs

marginally better than ODE in terms of average success rate

(0.90 versus 0.88). As we mentioned before, the success

performance is a measure which considers the number of

function calls and the success rate simultaneously and so it can
ODE

P NFC SR SP

6,072 50,844 1 50,844
5,4864 101,832 1 101,832
5,080 56,944 1 56,944
7,6344 117,756 1 117,756
74,580 177,300 1 177,300

16,092 834,668 1 834,668

37,260 75,278 0.92 81,823
0,142,125 421,300 0.16 2,633,125
16,083 74,717 0.92 81,214
93,960 128,340 0.68 188,735
8,760 10,152 1 10,152
3,128 11,452 1 11,452
68,372 100,280 1 100,280
94,500 202,010 0.96 210,427
01,460 70,408 1 70,408
15,000 121,750 0.60 202,900
52,000 213,330 0.56 380,900

24,000 253,910 0.55 461,700

Table 10 (Continued)

F D DE ODE

NFC SR SP NFC SR SP

f 10 30 385,192 1 385,192 369,104 1 369,104
60 – 0 – – 0 –

f 11 30 183,408 1 183,408 167,580 1 167,580
60 318,112 1 318,112 274,716 1 274,716

f 12 30 40,240 1 40,240 26,400 1 26,400
60 73,616 1 73,616 64,780 1 64,780

f 13 30 386,920 1 386,920 361,884 1 361,884
60 432,516 1 432,516 425,700 0.96 443,438

f 14 10 19,324 1 19,324 16,112 1 16,112
20 45,788 1 45,788 31,720 1 31,720

f 15 10 37,260 1 37,260 26,108 1 26,108
20 17,6872 1 17,6872 57,888 1 57,888
SRave 0.90 0.88

D: dimension, NFC: number of function calls (average over 50 trials), SR: success rate, SP: success performance. The last row of the table presents the average success

rates. The best NFC and the success performance for each case are highlighted in boldface.

S. Rahnamayan et al. / Applied Soft Computing 8 (2008) 906–918 917
be utilized for a reasonable comparison of optimization

algorithms.

5. Conclusion

For many soft computing techniques, in absence of a-priori

information about the solution, pure random guess is usually

the only option to generate candidate solutions. Obviously the

computation time, among others, is directly related to the

distance of the guess from the optimal solution.

Experimental results, recently published, indicate that

employing opposition-based learning within existing soft

computing algorithms can accelerate the learn and search

process. Promising results have been reported for differential

evolution, reinforcement learning and feedforward back-

propagation netwroks.

In this paper we established mathematical proofs and

experimental evidence to verify the advantage of opposite

points compared to additional random points when dealing with

high-dimensional problems. Both experimental and mathema-

tical results conform with each other; opposite points are more

beneficial than additional independent random points. We can

conclude that the opposition-based learning can be utilized to

accelerate learning and optimization methods since considering

the pair x and x�has apparently a higher fitness probability than

pure randomness.

Finding more accurate global optimum(s) in a shorter period

of time for complex problems is the main goal of all

evolutionary algorithms. Although the opposition concept

has a very old history in other sciences, that is the first time that

this concept is employed to enhance population-based

algorithms . The conducted experiments confirm that ODE

presents higher convergence rate than DE.

Furthermore, the proposed opposition-based schemes (i.e.,

population initialization and generation jumping) work at the

population level and leave the evolutionary part of the

algorithms untouched. This generality gives higher flexibility

to these schemes to be embedded inside other population-based

algorithms (such as GAs) for further investigation.
References

[1] I.L. Lopez Cruz, L.G. Van Willigenburg, G. Van Straten, Efficient

differential evolution algorithms for multimodal optimal control pro-

blems, Appl. Soft Comput. 3 (2003) 97–122.

[2] C.G. Moles a, J.R. Bangaa, K. Keller, Solving nonconvex climate control

problems: pitfalls and algorithm performances, Appl. Soft Comput. 5

(2004) 35–44.

[3] H.R. Tizhoosh, Opposition-based learning: a new scheme for machine

intelligence, in: International Conference on Computational Intelligence

for Modelling Control and Automation (CIMCA-2005), vol. I, Vienna,

Austria, (2005), pp. 695–701.

[4] H.R. Tizhoosh, Reinforcement learning based on actions and opposite

actions, in: International Conference on Artificial Intelligence and

Machine Learning (AIML-2005), Cairo, Egypt, 2005.

[5] H.R. Tizhoosh, Opposition-Based Reinforcement Learning, J. Adv. Com-

put. Intell. Intell. Inf. 10 (3) (2006) 578–585.

[6] M. Shokri, H.R. Tizhoosh, M. Kamel, Opposition-based Q (l) algorithm,

in: 2006 IEEE World Congress on Computational Intelligence (IJCNN-

2006), Vancouver, BC, Canada, (2006), pp. 646–653.

[7] F. Khalvati, H.R. Tizhoosh, M.D. Aagaard, Opposition-based window

memorization for morphological algorithms, in: IEEE Symposium on

Foundations of Computational Intelligence, Honolulu, Hawaii, USA,

April 1–5, 2007, pp. 425–430.

[8] H.R. Tizhoosh, M. Shokri, M.S. Kamel, Opposition-based Q (lambda) with

non-Markovian update, in: IEEE Symposium on Foundations of Computa-

tional Intelligence, Honolulu, Hawaii, USA, April 1–5, 2007, pp. 288–295.

[9] M. Ventresca, H, Tizhoosh, Simulated annealing with opposite neighbors,

in: IEEE Symposium on Foundations of Computational Intelligence,

Honolulu, Hawaii, USA, April 1–5, 2007, pp. 186–192.

[10] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, A novel population

initialization method for accelerating evolutionary algorithms, J. Comput.

Math. Appl. (Elsevier) 53 (10) (2007) 1605–1614.

[11] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based dif-

ferential evolution algorithms, in: 2006 IEEE World Congress on Com-

putational Intelligence (CEC-2006), Vancouver, BC, Canada, (2006), pp.

7363–7370.

[12] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based dif-

ferential evolution for optimization of noisy problems, in: 2006 IEEE

World Congress on Computational Intelligence (CEC-2006), Vancouver,

BC, Canada, (2006), pp. 6756–6763.

[13] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based dif-

ferential evolution (ODE), J. IEEE Trans. Evol. Comput. (December), in

press.

[14] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based

differential evolution (ODE) with variable jumping rate, in: IEEE

S. Rahnamayan et al. / Applied Soft Computing 8 (2008) 906–918918
Symposium on Foundations of Computational Intelligence, Honolulu,

Hawaii, USA, April 1–5, 2007, pp. 81–88.

[15] M. Ventresca, H.R. Tizhoosh, Improving the convergence of backpropa-

gation by opposite transfer functions, in: 2006 IEEE World Congress on

Computational Intelligence (IJCNN-2006), Vancouver, BC, Canada,

(2006), pp. 9527–9534.

[16] H.R. Tizhoosh, A.R. Malisia, Applying opposition-based ideas to the ant

colony system, in: IEEE Symposium on Foundations of Computational

Intelligence, Honolulu, Hawaii, USA, April 1–5, 2007, pp. 182–189.

[17] M. Ventresca, H. Tizhoosh, Opposite transfer functions and backpropaga-

tion through time, in: IEEE Symposium on Foundations of Computational

Intelligence, Honolulu, Hawaii, USA, April 1–5, 2007, pp. 570–577.

[18] H.R. Tizhoosh, M. Mahootchi, K. Ponnambalam, Opposition-based rein-

forcement learning in the management of water resources, in: IEEE

Symposium on Foundations of Computational Intelligence, Honolulu,

Hawaii, USA, April 1–5, 2007, pp. 217–224.

[19] J. Andre, P. Siarry, T. Dognon, An improvement of the standard genetic

algorithm fighting premature convergence in continuous optimization,

Adv. Eng. Software 32 (2001) 49–60.

[20] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley Longman Publishing Co, USA, 2005,ISBN:0-

201-15767-5.

[21] M. Dorigo, V. Maniezzo, A. Colorni, The Ant System: An Autocatalytic

Optimizing Process, Technical Report No. 91-016, Politecnico di Milano,

Italy, 1991.

[22] G.C. Onwubolu, B.V. Babu, New Optimization Techniques in

Engineering, Springer, Berlin, New York, 2004.

[23] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated

annealing, Science 220 (1983) 671–680.

[24] T. Ye, S. Kalyanaraman, A recursive random search algorithm for black-box

optimization, ACM Sigmetrics Perform. Eval. Rev. 32 (3) (2004) 44–53.

[25] V. Feoktistov, Differential Evolution: In Search of Solutions, Springer,

USA, 2006.

[26] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution

Strategies, Evolutionary Programming, Genetic Algorithms, Oxford

University Press Inc., USA, 1996.

[27] T. Bäck, U. Hammel, H.-P. Schwefel, Evolutionary computation: com-

ments on the history and current state, J. IEEE Trans. Evol. Comput. 1 (1)

(1997) 3–17.

[28] H.-P. Schwefel, Computational Intelligence: Theory and Practice,

Springer-Verlag, New York, USA, 2003.
[29] R. Storn, K. Price, Differential evolution: a simple and efficient heuristic

for global optimization over continuous spaces, J. Global Optimization 11

(1997) 341–359.

[30] J. Liu, J. Lampinen, A fuzzy adaptive differential evolution algorithm,

Soft Comput. – Fusion Foundations, Methodol. Appl. 9 (6) (2005) 1703–

1725.

[31] R. Storn, K. Price, Differential evolution—a simple and efficient adaptive

scheme for global optimization over continuous spaces, Berkeley, CA,

Tech. Rep. TR-95-012, 1995.

[32] J. Vesterstroem, R. Thomsen, A comparative study of differential evolu-

tion, particle swarm optimization, and evolutionary algorithms on numer-

ical benchmark problems, in: Proceedings of the Congress on

Evolutionary Computation (CEC-2004), IEEE Publications, vol. 2, San

Diego, California, USA, (July 2004), pp. 1980–1987.

[33] O. Hrstka, A. Kučerová, Improvement of real coded genetic algorithm

based on differential operators preventing premature convergence, Adv.

Eng. Software 35 (2004) 237–246.

[34] F. Sahba, H.R. Tizhoosh, M.M.A. Salama, Application of opposition-

based reinforcement learning in image segmentation, IEEE Symposium

on Foundations of Computational Intelligence, Honolulu, Hawaii, USA,

April 1–5, 2007, pp. 246–251.

[35] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-p. Chen, A. Auger, S.

Tiwari. Problem definitions and evaluation criteria for the CEC-2005:

Special session on real-parameter optimization. KanGAL Report

#2005005, IIT Kanpur, India, 2005.

[36] K. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical

Approach to Global Optimization (Natural Computing Series), 1st ed.,

Springer, 2005 ISBN:3540209506.

[37] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, J. IEEE

Trans. Evol. Comput. 3 (2) (1999) 82.

[38] J. Brest, S. Greiner, B. Bošković, M. Mernik, V. Žumer, Evolutionary

programming made faster, J. IEEE Trans. Evol. Comput. 10 (6) (2006)

646–657.

[39] C.Y. Lee, X. Yao, Evolutionary programming using mutations based on

the Lvy probability distribution, J. IEEE Trans. Evol. Comput. 8 (1) (2004)

1–13.

[40] M.M. Ali, A. Törn, Population set-based global optimization algorithms:

Some modifications and numerical studies, J. Comput. Operat. Res. 31

(10) (2004) 1703–1725.

[41] J. Sun, Q. Zhang, E.P.K. Tsang, DE/EDA: a new evolutionary algorithm

for global optimization, J. Inf. Sci. 169 (2005) 249–262.

	Opposition versus randomness in soft computing techniques
	Introduction
	Opposition-based learning (OBL): Definitions, theorems, and proofs
	Empirical verification of mathematical results
	Employing OBL to accelerate differential evolution
	Opposition-based differential evolution (ODE)
	Opposition-based population initialization
	Opposition-based generation jumping

	Benchmark functions
	Comparison strategies and metrics
	Setting control parameters
	Experimental results

	Conclusion
	References

